Soit $f: x \to f(x) = e^{\frac{1}{1-x}}$, pour tout x réel.

1/ Préciser le domaine de définition de f, sa continuité et dérivabilité.

- La fonction e^x est définie, continue et dérivable sur \mathbb{R} , donc e^A est défini, continu et dérivable pour tout A réel, sous réserves que A soit lui-même défini, continu et dérivable (la fonction exponentielle répercute les propriétés de A).

La fonction $g \to g(x) = \frac{1}{1-x}$ est définie, continue et dérivable sur $\mathbb{R} - \{1\}$, comme rapport de polynômes.

On conclue que $f \to f(x) = e^{\frac{1}{1-x}}$ est définie, continue et dérivable sur $\mathbb{R} - \{1\}$.

2/ Etudier les limites de f aux infinis. Que peut-on en déduire en termes d'asymptote ?

Soit C la courbe représentative de la fonction f.

Nous allons détailler le calcul des limites pour en assurer la compréhension.

- Si
$$x \to -\infty$$
, $1-x \to +\infty$, d'où : $\frac{1}{1-x} \to 0^+ (\frac{1}{1-x} > 0)$.

La croissance de l'exponentielle conservant les ordres, on déduit : $e^{\frac{1}{1-x}} \rightarrow 1^+$, puisque $e^0 = 1$.

D'où: $\lim_{x \to -\infty} f(x) = 1^+$ (Asymptote horizontale y = 1 vers $-\infty$).

La courbe C est <u>au dessus</u> de y = 1 vers $-\infty$).

- Si
$$x \to +\infty$$
, $1-x \to -\infty$, d'où: $\frac{1}{1-x} \to 0^{-} (\frac{1}{1-x} < 0)$.

La croissance de l'exponentielle conservant les ordres, on déduit : $e^{\frac{1}{1-x}} \rightarrow 1^-$, puisque $e^0 = 1$.

D'où: $\lim_{x \to \infty} f(x) = 1$ (Asymptote horizontale y = 1 vers $+\infty$).

La courbe C est au dessous de v = 1 vers $+\infty$.

3-a) Etudier les limites de f autour de la valeur x = 1. Que peut-on en déduire en termes d'asymptote ?

- Si
$$x \to 1^ (x < 1)$$
: $1 - x \to 0^+$ $(1 - x > 0)$, d'où $\frac{1}{1 - x} \to +\infty$ et $e^{\frac{1}{1 - x}} \to +\infty$.

 $\lim_{x\to 1} f(x) = +\infty$. On déduit une asymptote verticale $\, x=1$, à gauche de $\, x=1$.

- Si
$$x \to 1^+$$
 $(x > 1)$: $1 - x \to 0^ (1 - x < 0)$, d'où $\frac{1}{1 - x} \to -\infty$ et $e^{\frac{1}{1 - x}} \to 0^+$, puisque $\lim_{x \to -\infty} e^x = 0^+$.

 $\lim_{x\to 1} f(x) = 0^+$. Il n'y a pas d'asymptote verticale en x=1, à droite de x=1.

b) Peut-on en déduire une continuité partielle de f en x = 1?

 $\lim_{x\to 1} f(x) = 0^+$ autorise à poser f(1) = 0 et ainsi assurer la continuité de f en x = 1.

Le domaine devient \mathbb{R} , avec une cassure à gauche de x=1 (asymptote verticale d'un seul côté de x=1).

4-a) Etudier les variations de f sur son domaine de définition. Dresser un tableau de variation.

$$f = e^u \implies f' = u' \cdot e^u$$
. On sait aussi que $\left(\frac{1}{U}\right)' = -\frac{U'}{U^2}$, d'où $\left(\frac{1}{1-x}\right)' = -\frac{-1}{(1-x)^2} = \frac{1}{(1-x)^2}$.

On déduit :
$$f'(x) = u' \cdot e^u = \frac{1}{(1-x)^2} \cdot e^{\frac{1}{1-x}} > 0 \text{ sur } \mathbb{R} - \{1\}.$$

La fonction f est partout croissante, avec une fracture en x = 1.

x	-∞			-1		$+\infty$
f'(x)		+		0	+	
f(x)	1	7	$+\infty$	0	7	1

b) En posant f(1) = 0, déterminer le taux de variation de f en x = 1, par valeurs positives (x > 1).

On a posé f(1) = 0.

La dérivée à droite en
$$x = 1$$
 est $\lim_{\substack{x \to 1 \\ x > 1}} \frac{f(x) - f(1)}{x - 1} = \lim_{\substack{x \to 1 \\ x > 1}} \frac{f(x)}{x - 1} = -\lim_{\substack{x \to 1 \\ x > 1}} \frac{1}{1 - x} e^{\frac{1}{1 - x}}$ indéterminé $\frac{0}{0}$.

Posons
$$X = \frac{1}{1-x}$$
, $\lim_{{x \to 1} \atop x>1} \frac{1}{1-x} e^{\frac{1}{1-x}} = -\lim_{x \to -\infty} X \cdot e^x = 0$, selon la règle des croissances comparées en $-\infty$.

On déduit $f'_d(1) = 0$, soit une tangente horizontale en x = 1 (x > 1).

5/ Tracer la courbe représentative de f en précisant les asymptotes et tangentes dont il a été question.

