On considère un réel a strictement positif et la suite (u_n) définie pour tout entier naturel n par : $\begin{cases} u_0 = a \\ u_{n+1} = u_n. e^{-u_n} \end{cases}$.

1/ Montrer par récurrence que, pour tout entier naturel $n: u_n > 0$.

Soit la proposition de récurrence P_n : « $u_n > 0$ ».

- *Initialisation*: P_0 est vraie, car $u_0 = a > 0$.
- *Hérédité*: Supposons P_n vraie $(u_n > 0)$. Peut-on en déduire P_{n+1} vraie $(u_{n+1} > 0)$? Sachant $e^{-u_n} > 0$ et u_n supposé positif, on déduit $u_{n+1} = u_n$. $e^{-u_n} > 0$.
- Conclusion: P_n est vraie pour tout n entier naturel.

2/ Montrer que la suite (u_n) est décroissante.

La suite (u_n) étant à <u>termes positifs</u>, plutôt qu'étudier le signe de $u_{n+1} - u_n$, on peut étudier $\frac{u_{n+1}}{u_n}$.

En effet : (u_n) décroissante $\Leftrightarrow u_{n+1} < u_n \Leftrightarrow \frac{u_{n+1}}{u_n} < 1$, si $(u_n) > 0$, ce qui ne change pas le sens de l'inéquation.

Or:
$$u_{n+1} = u_n \cdot e^{-u_n} \iff \frac{u_{n+1}}{u_n} = e^{-u_n}$$
.

 $u_n > 0 \iff -u_n < 0$, donc $0 < e^{-u_n} < 1$, ce qui prouve que la suite (u_n) est décroissante.

Autre Méthode: On sait que $u_n > 0$, pour tout n entier naturel.

$$u_{n+1} - u_n = u_n \cdot e^{-u_n} - u_n = u_n \cdot (e^{-u_n} - 1)$$
.

$$u_n > 0 \Leftrightarrow -u_n < 0 \Leftrightarrow 0 < e^{-u_n} < 1$$
, soit $e^{-u_n} - 1 < 0$ et $u_{n+1} - u_n = u_n$. $(e^{-u_n} - 1) < 0$.

On déduit que la suite (u_n) est décroissante.

3/ La suite (u_n) est-elle convergente ? Si oui, déterminer sa limite.

La suite (u_n) est strictement décroissante et minorée par 0. Elle est donc convergente vers $L \ge 0$.

Passons la relation de récurrence $u_{n+1} = u_n \cdot e^{-u_n}$ à sa limite, lorsque n tend vers $+\infty$:

$$u_{n+1} = u_n. e^{-u_n}$$
 devient $L = L.e^{-L} \Leftrightarrow L(1 - e^{-L}) = 0 \Leftrightarrow \begin{cases} L = 0 \\ \text{ou} \\ e^{-L} = 1 \Leftrightarrow L = 0 \end{cases}$.

On conclue: $\lim_{n \to +\infty} u_n = 0$.