La suite u est définie par $u_0 = 1$ et $u_{n+1} = 2u_n + 3$, pour tout n entier naturel.

1/ Démontrer que, pour tout n entier naturel, on a $u_n > 0$.

Remarque:

A partir de $u_0 > 0$, le mode de construction des termes de la suite, $u_{n+1} = 2u_n + 3$, ne peut produire que des nombres positifs, soit $u_n > 0$, $\forall n \in \mathbb{N}$.

Démonstration par récurrence :

Soit la proposition P_n : « $u_n > 0$ », avec n entier naturel.

- a) Initialisation: P_0 est vraie, car $u_0 = 1 > 0$.
- b) *Hérédité*: Supposons P_n vraie $(u_n > 0)$. Peut-on en déduire P_{n+1} vraie $(u_{n+1} > 0)$. $u_n > 0 \implies 2u_n + 3 > 0$, soit $u_{n+1} > 0$.

On a vérifié que P_{n+1} est vraie, <u>sous réserves</u> que P_n le soit.

c) Conclusion: P_n est vraie pour tout entier naturel n.

En déduire que la suite u est croissante.

Sachant $u_n > 0$: $u_{n+1} = 2u_n + 3 \iff u_{n+1} - u_n = u_n + 3$, soit $u_{n+1} - u_n > 0$.

On déduit que $u_{n+1} > u_n$, pour tout n entier naturel, donc que la suite u est strictement croissante.

2/ Montrer que si la suite u est majorée, alors elle converge vers un nombre négatif.

Une suite *croissante* et *majorée* est convergente vers une limite finie $L = \lim_{n \to +\infty} u_n$.

Passons la relation de récurrence $u_{n+1} = 2u_n + 3$ à sa limite lorsque n devient infini.

Les termes u_n et u_{n+1} s'accumulent sur L jusqu'à se confondre avec cette limite, d'où : L = 2L + 3.

On déduit : L = -3.

Si u est majorée, elle converge vers L = -3, nombre négatif.

3/ Montrer que la suite u n'est pas majorée et déterminer sa limite.

Les termes (u_n) sont tous positifs. S'ils convergent vers une limite L finie, venant s'accumuler sur cette valeur, celle-ci ne peut être que positive elle-même, ce qui est en contradiction avec L = -3.

Donc u n'est pas majorée.

Etant strictement croissante, et non majorée, on déduit $\lim_{n \to +\infty} u_n = +\infty$.

Complément:

4/ Soit la suite v telle que, pour tout n entier naturel, $v_n = u_n - a$, où a est un nombre réel.

a) Déterminer a pour que v soit une suite géométrique.

$$v_n = u_n - a \iff u_n = v_n + a$$
.

D'où:
$$u_{n+1} = 2u_n + 3 \iff v_{n+1} + a = 2(v_n + a) + 3 \iff v_{n+1} = 2v_n + (a+3), \forall n \in \mathbb{N}$$
.

En posant a + 3 = 0, soit a = -3, on obtient $v_{n+1} = 2v_n$.

On conclue que pour a = -3, la suite v devient géométrique, avec $v_n = u_n + 3$.

b) Déterminer sa raison q et son premier terme v_0 .

$$v_{n+1} = 2v_n \implies q = +2$$
 et $v_n = u_n + 3 \implies v_0 = u_0 + 3 = 4$.

c) Exprimer v_n puis u_n , en fonction de n.

On sait que,
$$v$$
 étant géométrique : $v_n = v_0.q^n = 4 \times 2^n = 2^{n+2}$, $\forall n \in \mathbb{N}$. $u_n = v_n + a = v_n - 3 \implies u_n = -3 + 2^{n+2}$, $\forall n \in \mathbb{N}$.

d) En déduire la limite des suites v et u.

Pour la suite géométrique $v: q=2 \implies |q|>1$, d'où $\lim_{n\to +\infty}q^n=+\infty$ et $\lim_{n\to +\infty}v_n=+\infty$.

$$u_n = v_n - 3 \implies \lim_{n \to +\infty} u_n = \left(\lim_{n \to +\infty} v_n\right) - 3 = +\infty.$$

On a ainsi corroboré le résultat obtenu au 3/.