Soit f la fonction de la variable réelle x définie sur IR par $f(x) = e^x - x - 1$ et (C) sa courbe représentative dans un repère orthonormal $(0, \vec{i}; \vec{j})$ (unité 2 cm).

1-a) Etudier les variations de f: limites aux bornes de l'ensemble de définition, dérivée, tableau de variation.

Pour déterminer la limite de f en $+\infty$, on pourra écrire $f(x) = x \left(\frac{e^x}{r} - 1 - \frac{1}{r}\right)$.

f est une fonction définie, continue et dérivable sur ${\rm I\!R}$, comme somme de fonctions définies, continues et dérivables sur IR.

Limites aux bornes:

Si
$$x \to -\infty$$
 $\left\{ \begin{array}{l} e^x \to 0 \\ -x - 1 \to +\infty \end{array} \right\}$ d'où : $\lim_{x \to -\infty} f(x) = +\infty$.

Si
$$x \to -\infty$$
 $\begin{cases} e^x \to 0 \\ -x - 1 \to +\infty \end{cases}$ d'où : $\lim_{x \to -\infty} f(x) = +\infty$.
Si $x \to +\infty$ $\begin{cases} e^x \to +\infty \\ -x - 1 \to -\infty \end{cases}$ d'où : $\lim_{x \to +\infty} f(x)$ indéterminé de forme $\infty - \infty$.

Pour lever l'indétermination, on force la factorisation de x afin de mettre le terme $\frac{e^x}{x}$ en évidence :

$$f(x) = x \left(\frac{e^x}{x} - 1 - \frac{1}{x} \right) \text{ avec } \left\{ \lim_{\substack{x \to +\infty}} \frac{e^x}{x} = +\infty \\ \lim_{\substack{x \to +\infty}} \frac{1}{x} = 0 \right\} \text{ qui entraı̂ne} : \lim_{\substack{x \to +\infty}} \left(\frac{e^x}{x} - 1 - \frac{1}{x} \right) = +\infty \text{ et } \lim_{\substack{x \to +\infty}} f(x) = +\infty.$$

Dérivée:

$$f(x) = e^x - x - 1 \implies f'(x) = e^x - 1$$
.

- Recherche des extremum : $f'(x) = 0 \iff e^x - 1 = 0 \iff e^x = 1 \iff x = \ln 1 = 0$.

L'ordonnée de l'extremum est $y = f(1) = e^1 - 1 - 1 = e - 2 \approx 0.718$.

L'extremum est en E(+1; e-2).

- Signe de la dérivée : $f'(x) > 0 \Leftrightarrow e^x > 1 \Leftrightarrow \ln(e^x) > \ln 1$ puisque la fonction logarithme, croissante, conserve les ordres. On déduit : $f'(x) > 0 \iff x > 0$.

- Tableau de variation :

x	-∞		0		+∞
f'(x)		-	0	+	
f(x)	+∞	Я	0	7	+∞

En déduire le signe de f(x) suivant les valeurs de x.

Comme le <u>minimum</u> E est d'ordonnée $y = f(0) = e^0 - 0 - 1 = 1 - 1 = 0$.

On conclue que, pour tout x réel, $f(x) \ge 0$, soit : f(x) partout positif.

b) Montrer que la droite (D) d'équation y = -x - 1 est asymptote oblique à (C).

On étudie le comportement aux infinis de l'écart E(x) = f(x) - (-x - 1) entre la courbe (C) est la droite (D). (On note que E(x) mesure l'écart algébrique vertical allant de (D) jusqu'à (C)).

$$E(x) = f(x) - (-x - 1) = e^x$$
.

Donc: $\lim_{x \to -\infty} E(x) = \lim_{x \to -\infty} e^x = 0$, ce qui prouve que D: y = -x - 1 est asymptote oblique à (C) vers $-\infty$.

Par contre : $\lim_{x \to +\infty} E(x) = \lim_{x \to +\infty} e^x = +\infty$. Il n'y a donc pas d'asymptote du côté $+\infty$.

c) Déterminer une équation de la tangente (T) à (C) au point d'abscisse +1.

On sait: $T_a: y = f'(a)(x - a) + f(a)$.

D'où: $T_1: y = f'(1)(x-1) + f(1)$ avec f'(1) = e - 1 et f(1) = e - 2.

On conclue: $T_1: y = (e-1)(x-1) + (e-2)$ ou $T_1: y = (e-1)x - 1$.

Rappel: Un tangente est une droite dont l'équation est de la forme : y = ax + b, ce qui est bien le cas.

Construire (D), (T) et (C).

