La suite (u_n) est arithmétique, telle que $u_0 = 1000$ et $u_7 = 860$.

1/ Déterminer le rang p tel que $u_p = 0$.

u arithmétique $\Rightarrow u_n = u_0 + nr$, soit $u_7 = u_0 + 7r$.

On déduit :
$$r = \frac{u_7 - u_0}{7} = \frac{860 - 1000}{7} = \frac{140}{7} \implies r = -20$$
.

D'où:
$$u_p = u_0 + pr \iff p = \frac{u_p - u_0}{r} = \frac{0 - 1000}{-20} = 50$$
.

On déduit : $u_{50} = 0$, qui est le $51^{\text{ème}}$ terme de la suite u .

2/ Calculer la somme $S = u_0 + u_1 + + u_p$.

Si (u_n) est arithmétique, on sait que : $u_1 + u_2 + ... + u_n = \frac{n}{2}(u_1 + u_n)$.

On déduit :
$$S = u_0 + u_1 + \dots + u_p = \frac{p+1}{2}(u_0 + u_p)$$
.

Comme p = 50, $u_0 = 1000$ et $u_p = 0$, on déduit : $S = \frac{51}{2} \times (1000 + 0) = 51 \times 500 = 25.500$.