Les parties A, B et C sont indépendantes

Partie A

Restitution organisée des connaissances

L'objectif de cette partie est de démontrer le théorème suivant :

- Si X est une variable aléatoire suivant la loi normale centrée réduite, alors pour tout réel α appartenant
- à l'intervalle]0; 1[, il existe un unique réel strictement positif u_{α} tel que $P(-u_{\alpha} \le X \le u_{\alpha}) = 1 \alpha$.

Soit f la fonction définie sur l'ensemble des nombres réels \mathbb{R} par $f(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$.

Soit *H* la fonction définie et dérivable sur $[0; +\infty[$ par $H(x) = P(-x \le X \le x) = \int_{-x}^{x} f(t) dt$.

- 1/ Que représente la fonction f pour la loi normale centrée réduite ?
- 2/ Préciser H(0) et la limite de H(x) quand x tend vers $+\infty$.
- 3/ A l'aide de considérations graphiques, montrer que pour tout nombre réel x positif, $H(x) = 2 \int_0^x f(t) dt$.
- 4/ En déduire que la dérivée H' de la fonction H sur $[0; +\infty[$ est la fonction 2f, et dresser le tableau de variations de la fonction H sur $[0; +\infty[$.
- 5/ Démontrer alors le théorème énoncé.

Partie B

Un laboratoire se fournit en pipettes auprès de deux entreprises, notées A et B.

60% des pipettes viennent de l'entreprise A et 4,6% des pipettes de cette entreprise possèdent un défaut.

Dans le stock total du laboratoire, 5% des pièces présentent un défaut.

On choisit au hasard une pipette dans le stock du laboratoire et on note :

- A l'évènement : « La pipette est fournie par l'entreprise A » ;
- B l'évènement : « La pipette est fournie par l'entreprise B » ;
- D l'évènement : « La pipette a un défaut ».
- 1/ La pipette choisie au hasard présente un défaut ; quelle est la probabilité qu'elle vienne de l'entreprise A?
- 2/ Montrer que $p(B \cap D) = 0.0224$.
- 3/ Parmi les pipettes venant de l'entreprise B, quel pourcentage de pipettes présente un défaut ?

Partie C

Une pipette est dite conforme si sa contenance est comprise, au sens large entre 98 millilitres (mL) et 102 mL.

Soit X la variable aléatoire qui à chaque pipette prise au hasard dans le stock d'un laboratoire associe sa contenance (en mL).

On admet que X suit une loi normale de moyenne μ et écart type σ tels que $\mu = 100$ et $\sigma^2 = 1,0424$.

1/ Quelle est alors la probabilité, à 10⁻⁴ près, pour qu'une pipette prise au hasard soit conforme ?

(On pourra s'aider de la table ci-dessous ou utiliser une calculatrice).

Contenance x (en mL)	95	96	97	98	99
$P(X \le x)$ arrondi à 10^{-5}	0,00000	0,00004	0,00165	0,02506	0,16368
Contenance x (en mL)	100	101	102	103	104
$P(X \le x)$ arrondi à 10^{-5}	0,5	0,83632	0,97494	0,99835	0,99996

Pour la suite, on admet que la probabilité pour qu'une pipette soit non-conforme est p = 0.05.

2/ On prélève dans le stock du laboratoire des échantillons de pipettes de taille n, où n est un entier naturel supérieur ou égal à 100.

On suppose que le stock est assez important pour considérer ces tirages comme indépendants.

Soit Y_n la variable aléatoire qui à chaque échantillon de taille n associe le nombre de pipettes non-conformes de l'échantillon.

- a) Quelle est la loi suivie par la variable aléatoire Y_n ?
- b) Vérifier que n > 30, np > 5 et n(1-p) > 5. Quelle en est la conséquence ?
- c) Donner en fonction de n l'intervalle de fluctuation asymptotique au seuil de 95% de la fréquence des pipettes non-conformes dans un échantillon.
- d) Sur un lot de 1.600 pipettes, on dénombre 12 pipettes non conformes. Qu'en conclure ?