COMPOSITION DE MATHEMATIQUES SERIE N°1

Exercice n°1: Pour tous (5 points)

Partie A : Restitution Organisée de Connaissance

Pré requis: La suite (u_n) diverge vers $+\infty$ si tout intervalle du type]A; $+\infty[$ contient tous les termes de la suite à partir d'un certain rang.

Démontrer que si (u_n) et (v_n) sont deux suites telles que $u_n \le v_n$ à partir d'un certain rang et

$$\lim_{n \to +\infty} u_n = +\infty, \text{ alors } \lim_{n \to +\infty} v_n = +\infty.$$

Partie B

Soit la suite (u_n) définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = u_n + 2n + 3 \text{ pour tout entier naturel } n \end{cases}$

1. Etudier la monotonie de la suite (u_n).

2.

- a. Démontrer que, pour tout entier naturel n, $u_n > n^2$.
- b. On admet que la suite (n^2) diverge vers $+\infty$. Quelle est la limite de la suite (u_n) ?
- 3. Conjecturer une expression de u_n en fonction de n, puis démontrer la propriété ainsi conjecturée.

Exercice n°2: Pour tous (5 points)

On considère la suite numérique (v_n) définie pour tout entier naturel n par $\begin{cases} v_0 = 1 \\ v_{n+1} = \frac{9}{6 - v_n} \end{cases}$

1. On souhaite écrire un algorithme affichant, pour un entier naturel n donné, tous les termes de la suite, du rang 0 au rang n.

Parmi les trois algorithmes suivants, un seul convient. Préciser lequel en justifiant la réponse.

Algorithme Nº 1				
Variables :				
v est un réel				
i et n sont des entiers nature	els			
Début de l'algorithme :				
Lire n				
ν prend la valeur 1				
Pour i variant de 1 à n faire				
ν prend la valeur $\frac{9}{6-\nu}$				
Fin pour				
Afficher v				
Fin algorithme				

variables	•
ν est un re	éel
i et n son	t des entiers naturels
Début de	l'algorithme :
Lire n	
Pour i var	iant de 1 à <i>n</i> faire
v prend la	valeur 1
Afficher	υ
ν prend la	valeur $\frac{9}{6-\nu}$
Fin pour	
Fin algori	thme

Algorithme No 3				
Variables :				
v est un réel				
i et n sont des entiers nature	els			
Début de l'algorithme :				
Lire n				
ν prend la valeur 1				
Pour i variant de 1 à n faire				
Afficher v				
ν prend la valeur $\frac{9}{6-\nu}$				
Fin pour				
Fin algorithme				

2. Pour n = 100 on obtient l'affichage suivant :

1	1,800	2,143	2,333	2,455	2,538	2,600	2,647	2,684	2,714		
Pour n = 100, les derniers termes affichés sont :											
2,967	2,968	2,968	2,968	2,969	2,969	2,969	2,970	2,970	2,970		

Quelles conjectures peut-on émettre concernant la suite (v_n) ?

3.

- a. Démontrer par récurrence que, pour tout entier naturel n, $0 < v_n < 3$.
- b. Démontrer que, pour tout entier naturel n, $v_{n+1} v_n = \frac{(3 v_n)^2}{6 v_n}$. La suite (v_n) est-elle monotone?

On considère la suite (w_n) définie pour tout entier naturel par $w_n = \frac{1}{v_n - 3}$.

- 4. Démontrer que (w_n) est une suite arithmétique de raison $-\frac{1}{3}$.
- 5. En déduire l'expression de (w_n), puis celle de (v_n) en fonction de n.

Exercice n°3: Pour ceux qui suivent l'enseignement obligatoire (5 points)

On considère la suite (u_n) définie par $u_0 = \frac{1}{2}$ et telle que pour tout entier naturel n, $u_{n+1} = \frac{3u_n}{1+2u_n}$.

1.

- a. Calculer u₁ et u₂.
- b. Démontrer, par récurrence, que pour tout entier naturel n, 0 < u_n.
- 2. On admet que, pour tout entier naturel n, $u_n < 1$. Démontrer que la suite (u_n) est croissante.
- 3. Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = \frac{u_n}{1 u_n}$.
 - a. Montrer que la suite (v_n) est une suite géométrique de raison 3.
 - b. Exprimer pour tout entier naturel n, v_n en fonction de n.
 - c. En déduire que, pour tout entier naturel n, $u_n = \frac{3^n}{3^n + 1}$.

Exercice n°3: Pour ceux qui suivent l'enseignement de spécialité (5 points)

Déterminer les entiers naturels n tels que $\frac{13n-21}{3n+4}$ soit un entier.

Exercice n°4: Pour tous (5 points)

Soit la suite numérique (u_n) définie sur IN par :

$$u_0 = 2$$
 et pour tout entier naturel n, $u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1$.

1.

- a. Calculer $u_1,\,u_2,\,u_3$ et $u_4.$ On pourra en donner des valeurs approchées à 10^{-2} près.
- b. Formuler une conjecture sur le sens de variation de cette suite.

2.

- a. Démontrer que pour tout entier naturel $n, u_n \le n + 3$.
- b. Démontrer que pour tout entier naturel n, $u_{n+1} u_n = \frac{1}{3} (n + 3 u_n)$.
- c. En déduire une validation de la conjecture précédente.
- 3. On désigne par (v_n) la suite définie sur \mathbb{N} par $v_n = u_n n$.
 - a. Démontrer que la suite (v_n) est une suite géométrique de raison $\frac{2}{3}$.
 - b. En déduire que pour tout entier naturel n, $u_n = 2\left(\frac{2}{3}\right)^n + n$.
- 4. Pour tout entier naturel non nul n, on pose : $S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$ et $T_n = \frac{S_n}{n^2}$. Exprimer S_n en fonction de n.